If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-48=0
a = 36; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·36·(-48)
Δ = 6912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6912}=\sqrt{2304*3}=\sqrt{2304}*\sqrt{3}=48\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{3}}{2*36}=\frac{0-48\sqrt{3}}{72} =-\frac{48\sqrt{3}}{72} =-\frac{2\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{3}}{2*36}=\frac{0+48\sqrt{3}}{72} =\frac{48\sqrt{3}}{72} =\frac{2\sqrt{3}}{3} $
| 2x-(x+5)=1 | | 105=8x-2 | | 2x(x-7)=x(x-5) | | (7x+16)(5x-11)=0 | | 5/6{x+4}=15 | | 12x+5x+9=145 | | 12x5x+9=145 | | 3(x-4)=15-3x-12=153x=27x=9 | | (15)(5x+2)=(3x)(26) | | 10+5x=3x+16-5x-3x=16-102x=6x=3 | | -51/2x=0 | | 2(3x+2)=2x=1+x | | 10+5x=3x+16(5x-3x=16-102x=6x=3 | | b=5;8;0.35 | | b=5,8,0.35 | | b=2,8,0.25 | | 17-a=56 | | 0=2t^2-9t-18 | | 2=3x/4+34= | | 3(x-7)=-2(x-8)-3 | | 3(x-7)=-2(x-8)–3 | | 3(x-7)=-2(x-8)–3 | | (×-4)(x-9)=0 | | 4(x-4)=2x+4 | | 8×3f= | | 0-12=4x | | n÷8-56+24=32 | | C=10t^2+500 | | -8u+4(u-5)=-28 | | 3/n=12/16 | | (c+2)(c-3))=14 | | 10+5x=3x+16(5x-3x=16-102x=6)x=3 |